Skip to main content

CRISPR gene-editing will change food – here's what's coming

United States English

Soon, soybeans will be bred to yield stable oil without the addition of dangerous trans fats. Lettuce will be grown to handle warmer, drier fields. Wheat to contain less gluten. And pigs bred to resist deadly viruses. Someday, maybe even strawberry plants whose delicate berries can be picked by machine instead of by hand.

Ten years ago, such genetic changes would have been considered science fiction – or so far off into the future of breeding as to be almost unimaginable. But gene editing, particularly with a tool called CRISPR-CAS9, has made it much easier and more efficient to tinker with the genomes of plants and animals. The first CRISPR-edited products will begin reaching the market this year, and researchers believe it’s only a matter of time before US grocery shelves could be filled with gene-edited produce, grains and meat. 

CRISPR technology is still in its infancy. Short for “clustered regulatory interspersed short palindromic repeats”, CRISPR was first used in cells with a nucleus only six years ago. It takes advantage of the natural immune system of bacteria to make precise cuts in the target genome. This can be used to delete a few letters, turning a gene off, or dialing it up or down, or it can force a change in the genetic alphabet, giving the plant or animal new functions. It’s not a perfect process, but it’s much more precise and easier to work with than previous gene editing techniques, according to scientists. Researchers say many of these new functions will be copied from nature, making, say, a hothouse tomato as disease-resistant as a wild one without sacrificing flavor. But others could be entirely new – and likely to raise more concern.

Unlike genetic modification, gene editing doesn’t require transgenics, the movement of genes from one species to another. So, if there are dangers to GMO foods – which some, but far from all scientists believe – gene editing that simply removes genes or copies sequences from similar species is likely to be safer. Essentially, gene editing accomplishes what conventional breeding would, just more efficiently and more easily, according to Zachary Lippman, an expert in the genetics of flowering plants at the Cold Spring Harbor Laboratory on Long Island, New York. “This is a tool that creates what nature could create on its own just never got around [to] or had the opportunity to create,” he said.